Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(5): e1011376, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37172036

RESUMO

Zymoseptoria tritici is the fungal pathogen responsible for Septoria tritici blotch on wheat. Disease outcome in this pathosystem is partly determined by isolate-specific resistance, where wheat resistance genes recognize specific fungal factors triggering an immune response. Despite the large number of known wheat resistance genes, fungal molecular determinants involved in such cultivar-specific resistance remain largely unknown. We identified the avirulence factor AvrStb9 using association mapping and functional validation approaches. Pathotyping AvrStb9 transgenic strains on Stb9 cultivars, near isogenic lines and wheat mapping populations, showed that AvrStb9 interacts with Stb9 resistance gene, triggering an immune response. AvrStb9 encodes an unusually large avirulence gene with a predicted secretion signal and a protease domain. It belongs to a S41 protease family conserved across different filamentous fungi in the Ascomycota class and may constitute a core effector. AvrStb9 is also conserved among a global Z. tritici population and carries multiple amino acid substitutions caused by strong positive diversifying selection. These results demonstrate the contribution of an 'atypical' conserved effector protein to fungal avirulence and the role of sequence diversification in the escape of host recognition, adding to our understanding of host-pathogen interactions and the evolutionary processes underlying pathogen adaptation.


Assuntos
Ascomicetos , Triticum , Triticum/genética , Triticum/microbiologia , Peptídeo Hidrolases/metabolismo , Proteínas Fúngicas/metabolismo , Endopeptidases/metabolismo , Doenças das Plantas/microbiologia
2.
Sci Adv ; 8(19): eabn5907, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35544571

RESUMO

Plant and inflorescence architecture determine the yield potential of crops. Breeders have harnessed natural diversity for inflorescence architecture to improve yields, and induced genetic variation could provide further gains. Wheat is a vital source of protein and calories; however, little is known about the genes that regulate the development of its inflorescence. Here, we report the identification of semidominant alleles for a class III homeodomain-leucine zipper transcription factor, HOMEOBOX DOMAIN-2 (HB-2), on wheat A and D subgenomes, which generate more flower-bearing spikelets and enhance grain protein content. These alleles increase HB-2 expression by disrupting a microRNA 165/166 complementary site with conserved roles in plants; higher HB-2 expression is associated with modified leaf and vascular development and increased amino acid supply to the inflorescence during grain development. These findings enhance our understanding of genes that control wheat inflorescence development and introduce an approach to improve the nutritional quality of grain.


Assuntos
Proteínas de Grãos , MicroRNAs , Alelos , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Homeobox , Proteínas de Grãos/metabolismo , Inflorescência/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum
3.
J Exp Bot ; 72(22): 7710-7728, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34405865

RESUMO

Senescence is a complex trait under genetic and environmental control, in which resources are remobilized from vegetative tissue into grain. Delayed senescence, or 'staygreen' traits, can confer stress tolerance, with extended photosynthetic activity hypothetically sustaining grain filling. The genetics of senescence regulation are largely unknown, with senescence variation often correlated with phenological traits. Here, we confirm staygreen phenotypes of two Triticum aestivum cv. Paragon ethyl methane sulfonate mutants previously identified during a forward genetic screen and selected for their agronomic performance, similar phenology, and differential senescence phenotypes. Grain filling experiments confirmed a positive relationship between onset of senescence and grain fill duration, reporting an associated ~14% increase in final dry grain weight for one mutant (P<0.05). Recombinant inbred line (RIL) populations segregating for the timing of senescence were developed for trait mapping purposes and phenotyped over multiple years under field conditions. Quantification and comparison of senescence metrics aided RIL selection, facilitating exome capture-enabled bulk segregant analysis (BSA). Using BSA we mapped our two staygreen traits to two independent, dominant, loci of 4.8 and 16.7 Mb in size encompassing 56 and 142 genes, respectively. Combining association analysis with variant effect prediction, we identified single nucleotide polymorphisms encoding self-validating mutations located in NAM-1 homoeologues, which we propose as gene candidates.


Assuntos
Locos de Características Quantitativas , Triticum , Alelos , Grão Comestível/genética , Fenótipo , Locos de Características Quantitativas/genética , Triticum/genética
4.
Front Plant Sci ; 12: 638738, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936128

RESUMO

Senescence is a highly quantitative trait, but in wheat the genetics underpinning senescence regulation remain relatively unknown. To select senescence variation and ultimately identify novel genetic regulators, accurate characterization of senescence phenotypes is essential. When investigating senescence, phenotyping efforts often focus on, or are limited to, the visual assessment of flag leaves. However, senescence is a whole-plant process, involving remobilization and translocation of resources into the developing grain. Furthermore, the temporal progression of senescence poses challenges regarding trait quantification and description, whereupon the different models and approaches applied result in varying definitions of apparently similar metrics. To gain a holistic understanding of senescence, we phenotyped flag leaf and peduncle senescence progression, alongside grain maturation. Reviewing the literature, we identified techniques commonly applied in quantification of senescence variation and developed simple methods to calculate descriptive and discriminatory metrics. To capture senescence dynamism, we developed the idea of calculating thermal time to different flag leaf senescence scores, for which between-year Spearman's rank correlations of r ≥ 0.59, P < 4.7 × 10-5 (TT70), identify as an accurate phenotyping method. Following our experience of senescence trait genetic mapping, we recognized the need for singular metrics capable of discriminating senescence variation, identifying thermal time to flag leaf senescence score of 70 (TT70) and mean peduncle senescence (MeanPed) scores as most informative. Moreover, grain maturity assessments confirmed a previous association between our staygreen traits and grain fill extension, illustrating trait functionality. Here we review different senescence phenotyping approaches and share our experiences of phenotyping two independent recombinant inbred line (RIL) populations segregating for staygreen traits. Together, we direct readers toward senescence phenotyping methods we found most effective, encouraging their use when investigating and discriminating senescence variation of differing genetic bases, and aid trait selection and weighting in breeding and research programs alike.

5.
Commun Biol ; 3(1): 712, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239669

RESUMO

Crop productivity must increase at unprecedented rates to meet the needs of the growing worldwide population. Exploiting natural variation for the genetic improvement of crops plays a central role in increasing productivity. Although current genomic technologies can be used for high-throughput identification of genetic variation, methods for efficiently exploiting this genetic potential in a targeted, systematic manner are lacking. Here, we developed a haplotype-based approach to identify genetic diversity for crop improvement using genome assemblies from 15 bread wheat (Triticum aestivum) cultivars. We used stringent criteria to identify identical-by-state haplotypes and distinguish these from near-identical sequences (~99.95% identity). We showed that each cultivar shares ~59 % of its genome with other sequenced cultivars and we detected the presence of extended haplotype blocks containing hundreds to thousands of genes across all wheat chromosomes. We found that genic sequence alone was insufficient to fully differentiate between haplotypes, as were commonly used array-based genotyping chips due to their gene centric design. We successfully used this approach for focused discovery of novel haplotypes from a landrace collection and documented their potential for trait improvement in modern bread wheat. This study provides a framework for defining and exploiting haplotypes to increase the efficiency and precision of wheat breeding towards optimising the agronomic performance of this crucial crop.


Assuntos
Genoma de Planta/genética , Genômica/métodos , Haplótipos/genética , Melhoramento Vegetal/métodos , Triticum/genética , Variação Genética/genética , Técnicas de Genotipagem
6.
J Exp Bot ; 71(6): 1885-1898, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32097472

RESUMO

Genetic studies increasingly rely on high-throughput phenotyping, but the resulting longitudinal data pose analytical challenges. We used canopy height data from an automated field phenotyping platform to compare several approaches to scanning for quantitative trait loci (QTLs) and performing genomic prediction in a wheat recombinant inbred line mapping population based on up to 26 sampled time points (TPs). We detected four persistent QTLs (i.e. expressed for most of the growing season), with both empirical and simulation analyses demonstrating superior statistical power of detecting such QTLs through functional mapping approaches compared with conventional individual TP analyses. In contrast, even very simple individual TP approaches (e.g. interval mapping) had superior detection power for transient QTLs (i.e. expressed during very short periods). Using spline-smoothed phenotypic data resulted in improved genomic predictive abilities (5-8% higher than individual TP prediction), while the effect of including significant QTLs in prediction models was relatively minor (<1-4% improvement). Finally, although QTL detection power and predictive ability generally increased with the number of TPs analysed, gains beyond five or 10 TPs chosen based on phenological information had little practical significance. These results will inform the development of an integrated, semi-automated analytical pipeline, which will be more broadly applicable to similar data sets in wheat and other crops.


Assuntos
Procedimentos Cirúrgicos Robóticos , Triticum , Mapeamento Cromossômico , Genômica , Humanos , Fenótipo , Triticum/genética
7.
PLoS One ; 15(2): e0227826, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32023285

RESUMO

Dietary fibre (DF) has multiple health benefits and wheat grains are major sources of DF for human health. However, DF is depleted in white wheat flour which is more widely consumed than wholegrain. The major DF component in white flour is the cell wall polysaccharide arabinoxylan (AX). We have identified the Chinese wheat cultivar Yumai 34 as having unusually high contents of AX in both water-soluble and insoluble forms. We have therefore used populations generated from crosses between Yumai 34 and four other wheat cultivars, three with average contents of AX (Ukrainka, Altigo and Claire) and one also having unusually high AX (Valoris), in order to map QTLs for soluble AX (determined as relative viscosity of aqueous extracts of wholemeal flours) and total AX (determined by enzyme fingerprinting of white flour). A number of QTL were mapped, but most were only detected in one or two crosses. However, all four crosses showed strong QTLs for high RV/total AX on chromosome 1B, with Yumai 34 being the increasing parent, and a KASP marker for the Yumai 34 high AX allele was validated by analysis of high AX lines derived from Yumai 34 but selected by biochemical analysis. A QTL for RV was also mapped on chromosome 6B in Yumai 34 x Valoris, with Valoris being the increasing allele, which is consistent with the observation of transgressive segregation for this population. Association studies in an independent germplasm panel identified marker trait associations for relative viscosity in these same locations while direct selection for fibre content in breeding resulted in high levels of enrichment for the Yumai 34 1B allele. The data therefore indicate that marker-assisted breeding can be used to develop wheat with high AX fibre in white flour.


Assuntos
Farinha/análise , Locos de Características Quantitativas/genética , Triticum/genética , Xilanos/genética , Alelos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Escore Lod , Reprodutibilidade dos Testes , Viscosidade
8.
Plant Cell Environ ; 41(7): 1715-1725, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29314053

RESUMO

FLOWERING LOCUS T (FT) is a central integrator of environmental signals that regulates the timing of vegetative to reproductive transition in flowering plants. In model plants, these environmental signals have been shown to include photoperiod, vernalization, and ambient temperature pathways, and in crop species, the integration of the ambient temperature pathway remains less well understood. In hexaploid wheat, at least 5 FT-like genes have been identified, each with a copy on the A, B, and D genomes. Here, we report the characterization of FT-B1 through analysis of FT-B1 null and overexpression genotypes under different ambient temperature conditions. This analysis has identified that the FT-B1 alleles perform differently under diverse environmental conditions; most notably, the FT-B1 null produces an increase in spikelet and tiller number when grown at lower temperature conditions. Additionally, absence of FT-B1 facilitates more rapid germination under both light and dark conditions. These results provide an opportunity to understand the FT-dependent pathways that underpin key responses of wheat development to changes in ambient temperature. This is particularly important for wheat, for which development and grain productivity are sensitive to changes in temperature.


Assuntos
Genes de Plantas/fisiologia , Proteínas de Plantas/fisiologia , Triticum/crescimento & desenvolvimento , Deleção de Genes , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Germinação , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Temperatura , Triticum/genética , Triticum/fisiologia
9.
Genetics ; 205(4): 1657-1676, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28213475

RESUMO

Understanding the genomic complexity of bread wheat (Triticum aestivum L.) is a cornerstone in the quest to unravel the processes of domestication and the following adaptation of domesticated wheat to a wide variety of environments across the globe. Additionally, it is of importance for future improvement of the crop, particularly in the light of climate change. Focusing on the adaptation after domestication, a nested association mapping (NAM) panel of 60 segregating biparental populations was developed, mainly involving landrace accessions from the core set of the Watkins hexaploid wheat collection optimized for genetic diversity. A modern spring elite variety, "Paragon," was used as common reference parent. Genetic maps were constructed following identical rules to make them comparable. In total, 1611 linkage groups were identified, based on recombination from an estimated 126,300 crossover events over the whole NAM panel. A consensus map, named landrace consensus map (LRC), was constructed and contained 2498 genetic loci. These newly developed genetics tools were used to investigate the rules underlying genome fluidity or rigidity, e.g., by comparing marker distances and marker orders. In general, marker order was highly correlated, which provides support for strong synteny between bread wheat accessions. However, many exceptional cases of incongruent linkage groups and increased marker distances were also found. Segregation distortion was detected for many markers, sometimes as hot spots present in different populations. Furthermore, evidence for translocations in at least 36 of the maps was found. These translocations fell, in general, into many different translocation classes, but a few translocation classes were found in several accessions, the most frequent one being the well-known T5B:7B translocation. Loci involved in recombination rate, which is an interesting trait for plant breeding, were identified by QTL analyses using the crossover counts as a trait. In total, 114 significant QTL were detected, nearly half of them with increasing effect from the nonreference parents.


Assuntos
Genoma de Planta , Polimorfismo Genético , Triticum/genética , Evolução Molecular , Ligação Genética , Locos de Características Quantitativas
10.
Plant Methods ; 13: 117, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29299051

RESUMO

BACKGROUND: Plants demonstrate dynamic growth phenotypes that are determined by genetic and environmental factors. Phenotypic analysis of growth features over time is a key approach to understand how plants interact with environmental change as well as respond to different treatments. Although the importance of measuring dynamic growth traits is widely recognised, available open software tools are limited in terms of batch image processing, multiple traits analyses, software usability and cross-referencing results between experiments, making automated phenotypic analysis problematic. RESULTS: Here, we present Leaf-GP (Growth Phenotypes), an easy-to-use and open software application that can be executed on different computing platforms. To facilitate diverse scientific communities, we provide three software versions, including a graphic user interface (GUI) for personal computer (PC) users, a command-line interface for high-performance computer (HPC) users, and a well-commented interactive Jupyter Notebook (also known as the iPython Notebook) for computational biologists and computer scientists. The software is capable of extracting multiple growth traits automatically from large image datasets. We have utilised it in Arabidopsis thaliana and wheat (Triticum aestivum) growth studies at the Norwich Research Park (NRP, UK). By quantifying a number of growth phenotypes over time, we have identified diverse plant growth patterns between different genotypes under several experimental conditions. As Leaf-GP has been evaluated with noisy image series acquired by different imaging devices (e.g. smartphones and digital cameras) and still produced reliable biological outputs, we therefore believe that our automated analysis workflow and customised computer vision based feature extraction software implementation can facilitate a broader plant research community for their growth and development studies. Furthermore, because we implemented Leaf-GP based on open Python-based computer vision, image analysis and machine learning libraries, we believe that our software not only can contribute to biological research, but also demonstrates how to utilise existing open numeric and scientific libraries (e.g. Scikit-image, OpenCV, SciPy and Scikit-learn) to build sound plant phenomics analytic solutions, in a efficient and effective way. CONCLUSIONS: Leaf-GP is a sophisticated software application that provides three approaches to quantify growth phenotypes from large image series. We demonstrate its usefulness and high accuracy based on two biological applications: (1) the quantification of growth traits for Arabidopsis genotypes under two temperature conditions; and (2) measuring wheat growth in the glasshouse over time. The software is easy-to-use and cross-platform, which can be executed on Mac OS, Windows and HPC, with open Python-based scientific libraries preinstalled. Our work presents the advancement of how to integrate computer vision, image analysis, machine learning and software engineering in plant phenomics software implementation. To serve the plant research community, our modulated source code, detailed comments, executables (.exe for Windows; .app for Mac), and experimental results are freely available at https://github.com/Crop-Phenomics-Group/Leaf-GP/releases.

11.
BMC Plant Biol ; 16(1): 161, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27436187

RESUMO

BACKGROUND: Previous quantitative trait loci (QTLs) studies using the Avalon × Cadenza doubled haploid (DH) population identified eleven QTLs determining plant height, heading date and grain yield. The objectives of this study were: (i) to provide insight into the effects of these QTLs using reciprocal multiple near isogenic lines (NILs) with each pair of alleles compared in both parental backgrounds (Avalon or Cadenza), (ii) quantifying epistasis by looking at the background effects and (iii) predict favourable allelic combinations to develop superior genotypes adapted to a target environment. RESULTS: To this aim, a library of 553 BC2 NILs and their recurrent parents were tested over two growing seasons (2012/2013 and 2013/2014). The results obtained in the present study validated the plant height, heading date and grain yield QTLs previously identified. Epistatic interactions were detected for the 6B QTL for plant height and heading date, 3A QTL for heading date and grain yield and 2A QTL for grain yield. CONCLUSION: The marker assisted backcrossing strategy used provided an efficient method of resolving QTL for key agronomic traits in wheat as Mendelian factors determining possible epistatic interactions. The study shows that these QTLs are amenable to marker assisted selection, fine mapping, future positional cloning, and physiological trait dissection.


Assuntos
Locos de Características Quantitativas/genética , Triticum/genética , Cromossomos de Plantas/genética , Haploidia
12.
Field Crops Res ; 191: 150-160, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27212788

RESUMO

Reduced height 8 (Rht8) is the main alternative to the GA-insensitive Rht alleles in hot and dry environments where it reduces plant height without yield penalty. The potential of Rht8 in northern-European wheat breeding remains unclear, since the close linkage with the photoperiod-insensitive allele Ppd-D1a is unfavourable in the relatively cool summers. In the present study, two near-isogenic lines (NILs) contrasting for the Rht8/tall allele from Mara in a UK-adapted and photoperiod-sensitive wheat variety were evaluated in trials with varying nitrogen fertiliser (N) treatments and water regimes across sites in the UK and Spain. The Rht8 introgression was associated with a robust height reduction of 11% regardless of N treatment and water regime and the Rht8 NIL was more resistant to root-lodging at agronomically-relevant N levels than the tall NIL. In the UK with reduced solar radiation over the growing season than the site in Spain, the Rht8 NIL showed a 10% yield penalty at standard agronomic N levels due to concomitant reduction in grain number and spike number whereas grain weight and harvest index were not significantly different to the tall NIL. The yield penalty associated with the Rht8 introgression was overcome at low N and in irrigated conditions in the UK, and in the high-temperature site in Spain. Decreased spike length and constant spikelet number in the Rht8 NIL resulted in spike compaction of 15%, independent of N and water regime. The genetic interval of Rht8 overlaps with the compactum gene on 2DS, raising the possibility of the same causative gene. Further genetic dissection of these loci is required.

13.
Mol Breed ; 35: 70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25663815

RESUMO

Wheat breeders select for qualitative and quantitative traits, the latter often detected as quantitative trait loci (QTL). It is, however, a long procedure from QTL discovery to the successful introduction of favourable alleles into new elite varieties and finally into farmers' crops. As a proof of principle for this process, QTL for grain yield (GY), yield components, plant height (PH), ear emergence (EM), solid stem (SS) and yellow rust resistance (Yr) were identified in segregating UK bread wheat reference population, Avalon × Cadenza. Among the 163 detected QTL were several not reported before: 17 for GY, the major GY QTL on 2D; a major SS QTL on 3B; and Yr6 on 7B. Common QTL were identified on ten chromosomes, most interestingly, grain number (GN) was found to be associated with Rht-D1b; and GY and GN with a potential new allele of Rht8. The interaction of other QTL with GY and yield components was discussed in the context of designing a UK breeding target genotype. Desirable characteristics would be: similar PH and EM to Avalon; Rht-D1b and Vrn-A1b alleles; high TGW and GN; long and wide grains; a large root system, resistance to diseases; and maximum GY. The potential of the identified QTL maximising transgressive segregation to produce a high-yielding and resilient genotype was demonstrated by simulation. Moreover, simulating breeding strategies with F2 enrichment revealed that the F2-DH procedure was superior to the RIL and the modified SSD procedure to achieve that genotype. The proposed strategies of parent selection and breeding methodology can be used as guidance for marker-assisted wheat breeding.

14.
Mol Breed ; 34(3): 1023-1033, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25242885

RESUMO

Vernalization, photoperiod and the relatively poorly defined earliness per se (eps) genes regulate flowering in plants. We report here the validation of a major eps quantitative trait locus (QTL) located on wheat 1DL using near isogenic lines (NILs). We used four independent pairs of NILs derived from a cross between Spark and Rialto winter wheat varieties, grown in both the field and controlled environments. NILs carrying the Spark allele, defined by QTL flanking markers Xgdm111 and Xbarc62, consistently flowered 3-5 days earlier when fully vernalized relative to those with the Rialto. The effect was independent of photoperiod under field conditions, short days (10-h light), long days (16-h light) and very long days (20-h light). These results validate our original QTL identified using doubled haploid (DH) populations. This QTL represents variation maintained in elite north-western European winter wheat germplasm. The two DH lines used to develop the NILs, SR9 and SR23 enabled us to define the location of the 1DL QTL downstream of marker Xgdm111. SR9 has the Spark 1DL arm while SR23 has a recombinant 1DL arm with the Spark allele from Xgdm111 to the distal end. Our work suggests that marker assisted selection of eps effects is feasible and useful even before the genes are cloned. This means eps genes can be defined and positionally cloned in the same way as the photoperiod and vernalization genes have been. This validation study is a first step towards fine mapping and eventually cloning the gene directly in hexaploid wheat.

15.
Theor Appl Genet ; 127(8): 1831-42, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24985064

RESUMO

KEY MESSAGE: A high level of genetic diversity was found in the A. E. Watkins bread wheat landrace collection. Genotypic information was used to determine the population structure and to develop germplasm resources. In the 1930s A. E. Watkins acquired landrace cultivars of bread wheat (Triticum aestivum L.) from official channels of the board of Trade in London, many of which originated from local markets in 32 countries. The geographic distribution of the 826 landrace cultivars of the current collection, here called the Watkins collection, covers many Asian and European countries and some from Africa. The cultivars were genotyped with 41 microsatellite markers in order to investigate the genetic diversity and population structure of the collection. A high level of genetic diversity was found, higher than in a collection of modern European winter bread wheat varieties from 1945 to 2000. Furthermore, although weak, the population structure of the Watkins collection reveals nine ancestral geographical groupings. An exchange of genetic material between ancestral groups before commercial wheat-breeding started would be a possible explanation for this. The increased knowledge regarding the diversity of the Watkins collection was used to develop resources for wheat research and breeding, one of them a core set, which captures the majority of the genetic diversity detected. The understanding of genetic diversity and population structure together with the availability of breeding resources should help to accelerate the detection of new alleles in the Watkins collection.


Assuntos
Pão , Ecótipo , Genes de Plantas , Estudos de Associação Genética , Triticum/genética , Variação Genética , Técnicas de Genotipagem , Geografia , Repetições de Microssatélites , Fenótipo , Dinâmica Populacional
16.
J Integr Plant Biol ; 54(8): 555-66, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22788746

RESUMO

Increasing photosynthetic capacity by extending canopy longevity during grain filling using slow senescing stay-green genotypes is a possible means to improve yield in wheat. Ethyl methanesulfonate (EMS) mutated wheat lines (Triticum aestivum L. cv. Paragon) were screened for fast and slow canopy senescence to investigate the impact on yield and nitrogen partitioning. Stay-green and fast-senescing lines with similar anthesis dates were characterised in detail. Delayed senescence was only apparent at higher nitrogen supply with low nitrogen supply enhancing the rate of senescence in all lines. In the stay-green line 3 (SG3), on a whole plant basis, tiller and seed number increased whilst thousand grain weight (TGW) decreased; although a greater N uptake was observed in the main tiller, yield was not affected. In fast-senescing line 2 (FS2), yield decreased, principally as a result of decreased TGW. Analysis of N-partitioning in the main stem indicated that although the slow-senescing line had lower biomass and consequently less nitrogen in all plant parts, the proportion of biomass and nitrogen in the flag leaf was greater at anthesis compared to the other lines; this contributed to the grain N and yield of the slow-senescing line at maturity in both the main tiller and in the whole plant. A field trial confirmed senescence patterns of the two lines, and the negative impact on yield for FS2 and a positive impact for SG3 at low N only. The lack of increased yield in the slow-senescing line was likely due to decreased biomass and additionally a possible sink limitation.


Assuntos
Biomassa , Nitrogênio/metabolismo , Triticum/fisiologia , Mutação
17.
J Exp Bot ; 62(10): 3621-36, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21414962

RESUMO

The genetic variability of the duration of leaf senescence during grain filling has been shown to affect both carbon and nitrogen acquisition. In particular, maintaining green leaves during grain filling possibly leads to increased grain yield, but its associated effect on grain protein concentration has not been studied. The aim of this study was to dissect the genetic factors contributing to correlations observed at the phenotypic level between leaf senescence during grain filling, grain protein concentration, and grain yield in winter wheat. With this aim in view, an analysis of quantitative trait locus (QTL) co-locations for these traits was carried out on a doubled haploid mapping population grown in a large multienvironment trial network. Pleiotropic QTLs affecting leaf senescence and grain yield and/or grain protein concentration were identified on chromosomes 2D, 2A, and 7D. These were associated with QTLs for anthesis date, showing that the phenotypic correlations with leaf senescence were mainly explained by flowering time in this wheat population. Study of the allelic effects of these pleiotropic QTLs showed that delaying leaf senescence was associated with increased grain yield or grain protein concentration depending on the environments considered. It is proposed that this differential effect of delaying leaf senescence on grain yield and grain protein concentration might be related to the nitrogen availability during the post-anthesis period. It is concluded that the benefit of using leaf senescence as a selection criterion to improve grain protein concentration in wheat cultivars may be limited and would largely depend on the targeted environments, particularly on their nitrogen availability during the post-anthesis period.


Assuntos
Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Triticum/genética , Grão Comestível/genética , Genótipo , Haploidia , Modelos Lineares , Nitrogênio/metabolismo , Locos de Características Quantitativas/genética
18.
Plant Cell ; 22(4): 1046-56, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20363770

RESUMO

Grain morphology in wheat (Triticum aestivum) has been selected and manipulated even in very early agrarian societies and remains a major breeding target. We undertook a large-scale quantitative analysis to determine the genetic basis of the phenotypic diversity in wheat grain morphology. A high-throughput method was used to capture grain size and shape variation in multiple mapping populations, elite varieties, and a broad collection of ancestral wheat species. This analysis reveals that grain size and shape are largely independent traits in both primitive wheat and in modern varieties. This phenotypic structure was retained across the mapping populations studied, suggesting that these traits are under the control of a limited number of discrete genetic components. We identified the underlying genes as quantitative trait loci that are distinct for grain size and shape and are largely shared between the different mapping populations. Moreover, our results show a significant reduction of phenotypic variation in grain shape in the modern germplasm pool compared with the ancestral wheat species, probably as a result of a relatively recent bottleneck. Therefore, this study provides the genetic underpinnings of an emerging phenotypic model where wheat domestication has transformed a long thin primitive grain to a wider and shorter modern grain.


Assuntos
Evolução Molecular , Locos de Características Quantitativas , Sementes/anatomia & histologia , Triticum/genética , Mapeamento Cromossômico , Genes de Plantas , Fenótipo , Análise de Componente Principal , Sementes/genética
19.
Theor Appl Genet ; 119(3): 383-95, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19430758

RESUMO

Variation in ear emergence time is critical for the adaptation of wheat (Triticum aestivum L.) to specific environments. The aim of this study was to identify genes controlling ear emergence time in elite European winter wheat germplasm. Four doubled haploid populations derived from the crosses: Avalon x Cadenza, Savannah x Rialto, Spark x Rialto, and Charger x Badger were selected which represent diversity in European winter wheat breeding programmes. Ear emergence time was recorded as the time from 1st May to heading in replicated field trials in the UK, France and Germany. Genetic maps based on simple sequence repeat (SSR) and Diversity Arrays Technology (DArT) markers were constructed for each population. One hundred and twenty-seven significant QTL were identified in the four populations. These effects were condensed into 19 meta-QTL projected onto a consensus SSR map of wheat. These effects are located on chromosomes 1B (2 meta-QTL), 1D, 2A (2 meta-QTL), 3A, 3B (2 meta-QTL), 4B, 4D, 5A (2 meta-QTL), 5B, 6A, 6B 7A (2 meta-QTL), 7B and 7D. The identification of environmentally robust earliness per se effects will facilitate the fine tuning of ear emergence in predictive wheat breeding programmes.


Assuntos
Locos de Características Quantitativas , Estações do Ano , Triticum/genética , Cruzamento , Cromossomos de Plantas , Cruzamentos Genéticos , Meio Ambiente , Marcadores Genéticos , Haploidia , Repetições de Microssatélites , Mapeamento Físico do Cromossomo , Fatores de Tempo , Triticum/anatomia & histologia , Triticum/crescimento & desenvolvimento
20.
J Exp Bot ; 58(13): 3749-64, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18057045

RESUMO

Einkorn wheat Triticum monococcum (2n=2x=14, A(m)A(m)) is one of the earliest domesticated crops. However, it was abandoned for cultivation before the Bronze Age and has infrequently been used in wheat breeding. Little is known about the genetic variation in adaptively important biological traits in T. monococcum. A collection of 30 accessions of diverse geographic origins were characterized for phenotypic variation in various agro-morphological traits including grain storage proteins and endosperm texture, nucleotide-binding site (NBS) domain profiles of resistance (R) genes and resistance gene analogues (RGAs), and germination under salt and drought stresses. Forty-six SSR (single sequence repeat) markers from bread wheat (T. aestivum, 2n=6x=42, AABBDD) A genome were used to establish trait-marker associations using linear mixed models. Multiple significant associations were identified, some of which were on chromosomal regions containing previously known genetic loci. It is concluded that T. monococcum possesses large genetic diversity in multiple traits. The findings also indicate that the efficiency of association mapping is much higher in T. monococcum than in other plant species. The use of T. monococcum as a reference species for wheat functional genomics is discussed.


Assuntos
Adaptação Fisiológica/genética , Marcadores Genéticos , Variação Genética , Genoma de Planta , Proteínas de Plantas/genética , Triticum/genética , Perfilação da Expressão Gênica , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...